References

Bates, D., & Maechler, M. (2018). Matrix: Sparse and dense matrix classes and methods. https://CRAN.R-project.org/package=Matrix

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2), 434–444.

Cheng, S. H., & Higham, N. J. (1998). A modified Cholesky algorithm based on a symmetric indefinite factorization. SIAM Journal on Matrix Analysis and Applications, 19(4), 1097–1110.

Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53(2), 251–259.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.

Eriksson, J., Karvanen, J., & Koivunen, V. (2000). Source distribution adaptive maximum likelihood estimation of ICA model. Proceedings of the 2nd International Conference on ICA and BSS, 227–232.

Hérault, J., & Ans, B. (1984). Réseau de neurones à synapses modifiables: Décodage de messages sensoriels composites par apprentissage non supervisé et permanent. Comptes Rendus Des Séances de L’Académie Des Sciences. Série 3, Sciences de La Vie, 299(13), 525–528.

Hyvärinen, A. (2013). Independent component analysis: Recent advances. Philosophical Transactions of the Royal Society A, 371(1984), 20110534.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5), 411–430.

Ilmonen, P., Nordhausen, K., Oja, H., & Ollila, E. (2010). A new performance index for ICA: Properties, computation and asymptotic analysis. International Conference on Latent Variable Analysis and Signal Separation, 229–236.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.

Jutten, C., & Herault, J. (1991). Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24(1), 1–10.

Kaftory, R., & Zeevi, Y. Y. (2007). Probabilistic geometric approach to blind separation of time-varying mixtures. International Conference on Independent Component Analysis and Signal Separation, 373–380.

Knol, D. L., & Berge, J. M. ten. (1989). Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika, 54(1), 53–61.

Li, X.-L., & Zhang, X.-D. (2007). Nonorthogonal joint diagonalization free of degenerate solution. IEEE Transactions on Signal Processing, 55(5), 1803–1814.

Miettinen, J., Illner, K., Nordhausen, K., Oja, H., Taskinen, S., & Theis, F. J. (2016). Separation of uncorrelated stationary time series using autocovariance matrices. Journal of Time Series Analysis, 37(3), 337–354.

Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind source separation based on joint diagonalization in R: The packages JADE and BSSasymp. Journal of Statistical Software, 76.

Myers, R. H., & Myers, R. H. (1990). Classical and modern regression with applications (Vol. 2). Duxbury Press Belmont, CA.

Na, Y., & Chai, B. (2013). Performance evaluation for frequency domain blind source separation algorithms. Journal of Computational Information Systems, 9(18), 7369–7379.

Nordhausen, K. (2014). On robustifying some second order blind source separation methods for nonstationary time series. Statistical Papers, 55(1), 141–156.

Nordhausen, K., Cardoso, J.-F., Miettinen, J., Oja, H., Ollila, E., & Taskinen, S. (2019). JADE: Blind source separation methods based on joint diagonalization and some bss performance criteria. https://CRAN.R-project.org/package=JADE

Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.

Tharwat, A. (2018). Independent component analysis: An introduction. Applied Computing and Informatics.

Tong, L., Soon, V., Huang, Y., & Liu, R. (1990). AMUSE: A new blind identification algorithm. Circuits and Systems, 1990., IEEE International Symposium on, 1784–1787.

Tong, L., Xu, G., & Kailath, T. (1994). Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Transactions on Information Theory, 40(2), 340–349.

Vincent, E., Gribonval, R., & Févotte, C. (2006). Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech, and Language Processing, 14(4), 1462–1469.

Weisman, T., & Yeredor, A. (2006). Separation of periodically time-varying mixtures using second-order statistics. International Conference on Independent Component Analysis and Signal Separation, 278–285.

Yeredor, A. (2002). Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing, 50(7), 1545–1553.

Yeredor, A. (2003). TV-sobi: An expansion of SOBI for linearly time-varying mixtures. Proc. 4th International Symposium on Independent Component Analysis and Blind Source Separation (ICA’03), Nara, Japan.